If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+4X-404=0
a = 1; b = 4; c = -404;
Δ = b2-4ac
Δ = 42-4·1·(-404)
Δ = 1632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1632}=\sqrt{16*102}=\sqrt{16}*\sqrt{102}=4\sqrt{102}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{102}}{2*1}=\frac{-4-4\sqrt{102}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{102}}{2*1}=\frac{-4+4\sqrt{102}}{2} $
| -3x2+4-5x=2 | | x²-12x-45=0 | | 9(g-7)=2g | | -8+3x=90 | | 4-n=13n | | (2x+14)=(5x-18) | | 3x+2(x-4)=6x+9 | | 12301-x=141 | | 2(3+x)+4=4-2(×+9) | | (X-2)(3-2x)=3 | | 6x^2-3.375=0 | | (2-3x)2=x+1 | | 5x^2-28x+24=0 | | √w+7=6 | | 5x+3(x4)=76 | | (8x-51)=(13x-36) | | -3p+8=-8p-12 | | 6^x-3=36^4-3x | | -1/u+6=-5 | | 18y-14=1+18y | | E5x+2=2x+14 | | 30y-42=0 | | 1234567y=2345678 | | 2a=8/3 | | 3/4x-2/3=-6 | | -19=(-10x+6)/6 | | 36-x=-96 | | 2x=26x= | | 69+4x=20 | | 1/3(2x+4)^(1/2)=27 | | 5x-2.5=3.5 | | 1/6+x=5/6 |